Alpha-parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling.

نویسندگان

  • Eloi Montanez
  • Sara A Wickström
  • Johannes Altstätter
  • Haiyan Chu
  • Reinhard Fässler
چکیده

During blood vessel development, vascular smooth muscle cells (vSMCs) and pericytes (PCs) are recruited to nascent vessels to stabilize them and to guide further vessel remodelling. Here, we show that loss of the focal adhesion (FA) protein alpha-parvin (alpha-pv) in mice leads to embryonic lethality due to severe cardiovascular defects. The vascular abnormalities are characterized by poor vessel remodelling, impaired coverage of endothelial tubes with vSMC/PCs and defective association of the recruited vSMC/PCs with endothelial cells (ECs). Alpha-pv-deficient vSMCs are round and hypercontractile leading either to their accumulation in the tissue or to local vessel constrictions. Because of the high contractility, alpha-pv-deficient vSMCs fail to polarize their cytoskeleton resulting in loss of persistent and directed migration. Mechanistically, the absence of alpha-pv leads to increased RhoA and Rho-kinase (ROCK)-mediated signalling, activation of myosin II and actomyosin hypercontraction in vSMCs. Our findings show that alpha-pv represents an essential adhesion checkpoint that controls RhoA/ROCK-mediated contractility in vSMCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

α-parvin controls vascular mural cell recruitment to vessel wall by regulating RhoA/ROCK signalling

Thank you very much for submitting your research manuscript for consideration to The EMBO Journal editorial office. All three referees judge the reported data as potentially interesting, but at the same time emphasize different aspects of the manuscript that needs at least some additional experimentation. Both refs#1 and #2 very much appreciate the cell culture aspect of the study, though reque...

متن کامل

A Snail1/Notch1 Signaling Axis Controls Embryonic Vascular Development

Notch1-Delta-like 4 (Dll4) signalling controls vascular development by regulating endothelial cell (EC) targets that modulate vessel wall remodelling and arterial-venous specification. The molecular effectors that modulate Notch signalling during vascular development remain largely undefined. Here we demonstrate that the transcriptional repressor, Snail1, acts as a VEGF-induced regulator of Not...

متن کامل

Cellular Biology Essential Role for Thymosin 4 in Regulating Vascular Smooth Muscle Cell Development and Vessel Wall Stability

Rationale: Compromised development of blood vessel walls leads to vascular instability that may predispose to aneurysm with risk of rupture and lethal hemorrhage. There is currently a lack of insight into developmental insults that may define the molecular and cellular characteristics of initiating and perpetrating factors in adult aneurismal disease. Objective: To investigate a role for the ac...

متن کامل

NO mediates mural cell recruitment and vessel morphogenesis in murine melanomas and tissue-engineered blood vessels.

NO has been shown to mediate angiogenesis; however, its role in vessel morphogenesis and maturation is not known. Using intravital microscopy, histological analysis, alpha-smooth muscle actin and chondroitin sulfate proteoglycan 4 staining, microsensor NO measurements, and an NO synthase (NOS) inhibitor, we found that NO mediates mural cell coverage as well as vessel branching and longitudinal ...

متن کامل

RhoB controls endothelial cell morphogenesis in part via negative regulation of RhoA

Recent studies have suggested a role for the small GTPase RhoB in the control of processes required for angiogenesis. However, the mechanisms whereby RhoB exerts control over these processes are not well understood. Given the role of vascular endothelial growth factor (VEGF) in pathological angiogenesis, we were interested in examining whether RhoB contributed to VEGF-induced angiogenic process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 28 20  شماره 

صفحات  -

تاریخ انتشار 2009